5
DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Bernie Gargett edited this page 2025-02-15 02:01:08 +00:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion specifications to develop, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled variations of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses reinforcement learning to boost thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential identifying function is its reinforcement knowing (RL) step, which was used to improve the design's responses beyond the standard pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately enhancing both significance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, implying it's geared up to break down intricate questions and reason through them in a detailed way. This guided thinking process enables the design to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT abilities, aiming to produce structured reactions while concentrating on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has actually captured the industry's attention as a flexible text-generation design that can be incorporated into numerous workflows such as representatives, rational reasoning and information analysis tasks.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion criteria, allowing efficient inference by routing queries to the most pertinent specialist "clusters." This method permits the model to specialize in different issue domains while maintaining overall performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, larsaluarna.se we will utilize an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more efficient designs to mimic the behavior and reasoning patterns of the larger DeepSeek-R1 model, using it as an instructor design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid harmful content, it-viking.ch and examine models against crucial safety criteria. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce numerous guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limitation increase, produce a limit increase demand and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For instructions, see Set up approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, prevent damaging material, and evaluate designs against crucial security criteria. You can execute security procedures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to assess user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic circulation involves the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and choose the DeepSeek-R1 model.

The model detail page offers essential details about the model's capabilities, rates structure, and execution standards. You can discover detailed use directions, including sample API calls and code bits for integration. The design supports various text generation jobs, consisting of content production, code generation, and question answering, using its reinforcement learning optimization and CoT reasoning abilities. The page likewise includes implementation alternatives and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, select Deploy.

You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, enter a number of instances (between 1-100). 6. For Instance type, pick your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can set up sophisticated security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function permissions, and encryption settings. For many utilize cases, the default settings will work well. However, for production implementations, you might desire to review these settings to align with your company's security and compliance requirements. 7. Choose Deploy to start using the model.

When the deployment is total, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive interface where you can experiment with various prompts and adjust model specifications like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal results. For instance, material for inference.

This is an outstanding method to explore the design's thinking and text generation capabilities before incorporating it into your applications. The playground offers instant feedback, assisting you how the design reacts to numerous inputs and letting you tweak your prompts for ideal results.

You can quickly evaluate the design in the play area through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning using a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, fishtanklive.wiki see the GitHub repo. After you have actually developed the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, sets up reasoning specifications, and sends a demand to create text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and hb9lc.org release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 practical approaches: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you select the technique that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model internet browser shows available designs, with details like the provider name and design capabilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card shows key details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if relevant), suggesting that this design can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the model

    5. Choose the design card to view the model details page.

    The design details page includes the following details:

    - The model name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you deploy the model, it's recommended to evaluate the model details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, use the immediately produced name or create a custom-made one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the variety of instances (default: 1). Selecting appropriate instance types and counts is vital for expense and performance optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we strongly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The deployment process can take several minutes to complete.

    When implementation is total, your endpoint status will alter to InService. At this point, the model is prepared to accept inference requests through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the release is complete, you can invoke the design utilizing a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS approvals and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for releasing the model is offered in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid undesirable charges, complete the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the model utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace releases.
  5. In the Managed deployments area, find the endpoint you desire to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the right release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business develop innovative services using AWS services and accelerated calculate. Currently, he is focused on establishing methods for fine-tuning and enhancing the inference performance of big language designs. In his downtime, Vivek takes pleasure in treking, seeing films, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building options that help consumers accelerate their AI journey and unlock business worth.